
54 Issue 120 July 2000 CIRCUIT CELLAR® www.circuitcellar.com

Quick and Easy
Motor Control

FEATURE
ARTICLE

t
Before you get your
motor running and
head out on the high-
way, you may want to
listen to what Alan
has to say about the
PIC-SERVO from JR
Kerr Engineering. If
you need to control a
DC motor with encoder
feedback, this chip
will fit the bill nicely.

here are many
methods for con-

trolling motors. You
can use stepper motors,

DC motors that use PWM and encod-
ers for feedback, or a complete preci-
sion motion control system that uses
an LM628 motion-control chip.

These systems require a lot of
work building and programming mi-
croprocessors to get the motor started.
This article will show you how to
achieve the first move in an hour, for
only about $40!

NEW PRODUCT
Recently, JR Kerr introduced a new

product that is helpful for controlling
a DC motor with encoder feedback.
The PIC-SERVO is a pair of PIC mi-
crocontroller chips designed to imple-
ment a PID servo-control system.

The system is implemented as a
two-chip set. One chip is used as a 16-
bit quadrature encoder counter. The
other is used to implement the PID

control algorithms and communicate
through an asynchronous serial port
to a host computer or microprocessor.
The set is available for $35 through
several distributors. You only need to
add a motor driver.

The JR Kerr web site provides ex-
cellent descriptions of the pinouts,
theory of operation, example imple-
mentation, and sample code, so I
won’t expound on those. Follow the
schematic in the documentation,
hook it up to your serial port, and
let’s get going (see Figure 1).

MOTOR CONNECTIONS
First, you need to hook up the

motor correctly. Attach the encoder
inputs to the PIC-ENC chip, and at-
tach the motor power leads to the
motor driver. If you have more than
one PIC-SERVO chipset, set the ad-
dresses of each chipset using the in-
structions at the JR Kerr site.

Next, use the PIC-SERVO PWM
mode to confirm the motor is hooked
up correctly. Enable the PWM mode
with the LOAD_TRAJECTORY com-
mand, and set a PWM value to about
64 to get the motor moving.

You can determine if the position
values are counting up or down by
using the READ_STATUS command.
They should be counting up. If they
are counting down, reverse either the
motor’s power connections or swap
the A and B encoder wires. Then,
using the LOAD_TRAJECTORY com-
mand, reverse the direction of the
motor and verify that the encoder
counts down.

At this point, the motor and en-
coder are wired properly. However, if
you want the positive direction of
motion to be the other way, swap the
motor power and encoder connections.

Go through this exercise for each
motor/encoder/PIC-SERVO unit.

Alan Kilian

Implementing a PIC-SERVO Controller

 CIRCUIT CELLAR® Issue 120 July 2000 55www.circuitcellar.com

After you have your motors
correctly wired and tested,
let’s get to the PID part.

SAFETY
The motor-control val-

ues depend on your robot’s
configuration. Completely
assemble the robot before
tuning the motion controls.
If you add equipment later,
you will probably have to
tune the controls again.

You are going to insti-
gate strange motions for
the motors and mechanics,
so be prepared with an
emergency stop button.
Something can catch in a
gear train easily, or the
mechanics may fly apart
during tuning. You can
hook up a switch in series
with the motor DC power supply to
stop the motors when things get out
of hand.

PROPORTIONAL TERM
Here are some abbreviations that

I’ll use for the article. The propor-
tional gain is called Kp. The deriva-
tive gain is Kd, and the integral gain is
Ki. The desired position, velocity, and

acceleration are P, V, and A. The posi-
tion error, where you want to be mi-
nus where you are, is Ep. And, Ev is
the velocity error, how fast you want
to go minus how fast you are going.

Let’s review the PID coefficients.
Prop your robot off the ground so that
the wheels can turn. Send two packets
to the PIC-SERVO to get things set up.
Use the LOAD_TRAJECTORY command

to set P to zero, V and A to a large
value like 0x1FFFFFFF, and enable the
servo loop. Then, use the SET_GAIN
command to set the position-error
limit to 0x3FFF, and the Kp, Kd, and
Ki terms to zero.

Kp indicates how hard the motor
should work to remain in its current
position. Set Kp to 1 and enable the
servo loop; the motor will stay

where it was when you en-
abled the servo.

If you move the motor shaft
by hand, the motor driver will
try moving the motor back to
where it started. It can’t
achieve starting location, but
you should be able to see a
voltage across the motor with
a voltmeter, or a ’scope. If you
turn the motor in the other
direction, you should see the
motor-direction bit change. If
these things happen, the con-
troller is trying to servo the
motor back to its desired loca-
tion. The value of the PWM
signal is:

PWM =
Kp× Ep

256

where PWM = 0 is fully off,
and PWM = 255 is fully on.
You can see this if you have a

Figure 1—This is a schematic for the minimal PID control system using the PIC-SERVO.

0

200

400

600

800

1000

1200

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

E
nc

od
er

 c
ou

nt
s

Seconds

 Kp = 100 through 800, Ki = 0, Kd = 0

Kp = 100

Kp = 200

Kp = 400

Kp = 600

Kp = 800

Desired position

Figure 2—This shows the motion trajectories when using only Kp.

56 Issue 120 July 2000 CIRCUIT CELLAR® www.circuitcellar.com

value might cause your motor to vi-
brate quickly and overheat.

Testing with only Kp gives poor
performance. First, Kp is set too low,
and the motor doesn’t get close to
the desired position. As you increase
Kp, you get closer to the target loca-
tion; then it begins to overshoot the
target and backs up. Even greater Kp
values make the motor overshoot and
then oscillate around the desired
stopping point.

Figure 2 shows the result of moving
a 1000-encoder count using Kp = 100
through Kp = 800.

THE DERIVATIVE TERM
The Kd term controls the desired

velocity, like the Kp term controls the
desired position. The “d” stands for
derivative, and the derivative of posi-
tion is velocity, so let’s call it velocity.

 You’ve probably increased Kp to
get the motor running, and now it’s
oscillating around the desired set
point, never stopping at the correct
point. The servo loop works perfectly.
The problem is that you didn’t pro-
gram the motor to stop at the set
point, you programmed it to head
towards the set point if it’s not there.

If you increase Kd, you’re telling
the servo to follow a desired velocity
in addition to a desired position. The
PIC-SERVO will internally generate
both a desired position and a desired
velocity 2000 times per second during
the move. It compares these values to
the actual position and velocity and
generate two error signals, Ep and Ev.

Now, I’ll explain how Ev and Kd
make it speed up or slow down. The
PIC-SERVO wants the motor to stop
when it is at the end of a move, so the
desired velocity is zero, but the actual
velocity is the motor’s speed as it
passes the set point. Because the mo-
tor is going too fast, the control loop
reduces the PWM duty cycle to slow
the motor as it nears the end of its
move. The larger the Kd value, the
more the system tries to make the
motor follow the desired velocity and
stop at the end of the move.

If Kd is too great, the slightest mo-
tor motion causes the motor to turn on
fully in the opposite direction, which
makes the motor move in that direc-
tion, which, in turn, makes the con-
troller turn the motor on in the other
direction. You can experiment with

this value by setting Kp to
zero, Kd to 100, and giving
the motor a fast, sharp tap
that causes a significant
velocity error and deter-
mines if Kd is too great.

You should hear a quiet
buzz, but you might get a
wildly oscillating motor
that tries to break your
gear train, so be ready
with the off switch.

FIRST STEPS
Try to make a 1000-

count step. First, set the
velocity and acceleration
values to high values
(100,000 for both). Set Kd

400-count-per-revolution encoder.
With 1 Kp, you need to turn the mo-
tor 80 revolutions to get the PWM
signal half-way on.

PWM = 1 × 400 × 80

256
= 125

If you choose a Kp of 160, the PWM
signal can turn fully on in one revolution:

160 × 400 × 1
256

= 250

Because you only set the Kp term to 1,
it’s like you have a weak spring trying
to move the motor back to the start-
ing location. The farther you move it
from its set point, the harder the mo-
tor turns on. You need to turn it far to
get more motor torque.
Increasing Kp means the
controller works harder to
hold the motor at the origi-
nal position.

Now, try setting Kp to
higher values. A value of
2000 will probably be like a
strong spring. If you move
the encoder 32 encoder
counts (29°), the motor will
turn on fully, trying to get
the encoder back to zero.

The motor will vibrate
back and forth across the
set point like a spring. In
fact, you probably should
sneak up on the larger
values. Jumping to a large

0

200

400

600

800

1000

1200

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

E
nc

od
er

 c
ou

nt
s

Seconds

 Kp = 320, Ki = 0, various Kd

Kd = 1000
Kd = 5000

Kd = 8000

Kd = 17000

Desired position

Figure 3—These
are the motion
trajectories when
using Kp and Kd.

0

200

400

600

800

1000

1200

0 0.05 0.1 0.15 0.2

E
nc

od
er

 c
ou

nt
s

Seconds

Kp = 320

Kp = 400

Kp = 500Kp = 590
Desired position

Kd = 8000

Figure 4—These motion trajectories are the results you get from using a large Kd value
and increasing Kp values.

 CIRCUIT CELLAR® Issue 120 July 2000 57www.circuitcellar.com

to the highest value that
didn’t cause things to break,
and set Kp to 100. Then, set
the PIC-SERVO to servo
mode by sending the
LOAD_TRAJECTORY com-
mand followed by the posi-
tion, velocity, and
acceleration values.

Issue a START_MOTION
command and watch what
happens. The motor moved,
but probably not the entire
1000 counts. It should move
in the correct direction at
least. Move the motor by
hand, watching the encoder
values and the status until
it reaches 1000 counts. After the
status confirms it’s complete, begin
increasing the Kp value, making one-
rotation moves until the motor makes
a move of almost 1000 counts.

If the motor moves more than
1000 counts, turns around, goes back
past the set point, reverses again,
and oscillates forever, there’s too
much Kp.

TEST DRIVE
Because I planned to test drive the

controller, I wanted a simple way to
see what a move looks like. I built a
motion control system to drive an
Etch-a-Sketch (check out www .etch-
a-sketch.com/).

Each knob was replaced with a
nylon gear and two motors and 96 line

encoders were mounted
to a base plate. Because
each line on a quadra-
ture encoder produces
four counts at the en-
coder counter, this gave
me 384 counts per revo-
lution at the motor, and
with a 122:24 gear ratio,
a total of:

384 × 122
24

= 1950

counts per revolution
at the knob.

Using the PIC-
SERVO, I drove the

horizontal knob at a constant veloc-
ity, and commanded the vertical mo-
tor to do a step motion. The high gear
ratio makes it difficult to see the
ringing by looking at the screen.

Figure 2 shows that I need 600 Kp
before I get close to the desired set
point. Kp values greater than 600
overshoot the desired set point.

Figure 3 shows what happens when

-600

-500

-400

-300

-200

-100

0

100

0 0.1 0.2 0.3 0.4 0.5 0.6

E
nc

od
er

 c
ou

nt
s

Seconds

Integral gain example

Ki = 0

Ki = 100

Kp = 300, Kd = 8000

Figure 5—Notice the motion trajectories that result when using different Ki values.

58 Issue 120 July 2000 CIRCUIT CELLAR® www.circuitcellar.com

SOFTWARE
The parts list and software is avail-
able on the Circuit Cellar web site.

SOURCES
PIC-SERVO
J R Kerr Automation Engineering
www.jrkerr.com

Distributors
Jameco
(800) 831-4242
(800) 237-6948 Fax
www.jameco.com

HdB Electronics
(650) 368-1388
(800) 2 TRY HDB
Fax: (650) 368-1347
www.hdbelectronics.com

I increase Kd from 1000 to
8000. As Kd increases, per-
formance gets better until it
reaches 8000, then the per-
formance worsens and never
reaches the set point.

Figure 4 shows what
happens when I increase Kp
using 8000 Kd. Again, per-
formance increases to a
point, and then gets worse.

WHAT’S THE I TERM?
If you’re going to control a

simple robot that won’t try to
stop on a hill, or need to be
precise in its location, you
don’t need an I term.

To demonstrate the I term’s value,
I added a stick and ball of clay to the
Etch-a-Sketch. If I try to position the
motor so the stick is horizontal, the
clay will force the motor off position.
This simulates a robot stopping on a
hill. The READ_STATUS command
moved the position and velocity and
plotted the results using a graphing
program.

With an upward move, the motor
stops too soon and never reaches the
desired location (see Figure 3). If you
add more Kp to get it to stop at the
correct location, you will overshoot
the end point and ring. The motor
won’t stop at the set point. If you look
at what’s happening, you’ll under-
stand why.

Imagine that the motor did stop at
the set point. What would happen?
The position and velocity errors
would be zero, so Kp × Ep + Kd × Ed =
PWM = 0. The motor is turned off and
it falls backwards due to the weight.
Then Ep, Ev, and PWM increase, get-
ting closer to the endpoint again.

If you could use the constant posi-
tion error to increase the PWM, you
could pinpoint the set point. If you
could leave that PWM value on when
you get to the set point, you would be
able to stop at the set point even if
there is a force trying to move it away
from the set point.

That’s what the I term does. It
allows the error value to add up over
time, and makes the motor move
slowly to the final set point. Be care-
ful because too much Ki or integral

limit can make things unstable
quickly. Figure 5 shows what happens
with a 0 and 100 Ki.

MOVE LENGTHS
Figure 6 shows the performance

when you try to do different lengths
of moves. Performance is successful
to a move length of 2000 encoder
counts, then it overshoots. This
means that you may need different
parameters depending on the move
length. There is no penalty for looking
at the length, and then setting the
coefficients for that move differently
from the other lengths.

GET MOVING
Getting a PID control loop to per-

form is complex. By trying different
values, you might get the desired
performance. Or, you may reach the
goal by starting with one parameter,
changing it until you get good perfor-
mance, and then working on the oth-
ers systematically.

You’ll learn a lot by taking the
system for a spin, and you’ll get a
great motion control system, too. I

Figure 6—These are the motion trajectories for various move lengths.

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15 0.2
-500

0

500

1000

1500

2000

2500

3000

3500

4000

E
nc

od
er

 c
ou

nt
s

Seconds

Alan Kilian is a lead visualization
programmer at the University of
Minnesota’s Computational Biology
Centers. He’s worked as a program-
mer for 17 years at Cray Research
Inc. and CyberOptics Inc. and is a
founding member of the Twin Cities
Robotics club (www.tcrobots.org). You
may reach him at kilian@pobox.com.

Circuit Cellar, the Magazine for Computer Applications.
Reprinted by permission. For subscription information,
call (860) 875-2199, subscribe@circuitcellar.com or
www.circuitcellar.com/subscribe.htm.

http://www.jrkerr.com
http://www.jameco.com
http://www.hdbelectronics.com

